Safecracking the Brain
It’s hard to imagine an encryption machine more sophisticated than the human brain. This three-pound blob of tissue holds an estimated 86 billion neurons, cells that rapidly fire electrical pulses in split-second response to whatever stimuli our bodies encounter in the external environment. Each neuron, in turn, has thousands of spindly branches that reach out to nodes, called synapses, which transmit those electrical messages to other cells. Somehow the brain interprets this impossibly noisy code, allowing us to effectively respond to an ever-changing world.Given the complexity of the neural code, it’s not surprising that some neuroscientists are borrowing tricks from more experienced hackers: cryptographers, the puzzle-obsessed who draw on math, logic, and computer science to make and break secret codes. That’s precisely the approach of two neuroscience labs at the University of Pennsylvania, whose novel use of cryptography has distinguished them among other labs around the world, which are hard at work deciphering how the brain encodes complex behaviors, abstract thinking, conscious awareness, and all of the other things that make us human.The Penn scientists have taken their cues from a 73-year-old algorithm that British code-breaker Alan Turing used to read secret German messages during World War II, and a mathematical sequence more famously used to break into digital keypad locks on cars. “Neurons extract information from the world and put it in code,” says Joshua Gold, an associate professor of neuroscience at the University of Pennsylvania. “There’s got to be some kind of code-breaker in the brain to make sense of that.” Employing cryptography in the neuroscience lab, adds Gold, has provided new insights into the “gooshy hardware” that is the brain, exposing its operations as an “information-processing machine.”Read more at...Nautil.us, October 2013.